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ABSTRACT 
A fully coupled numerical model to simulate the complex behaviour of soil deformation, water flow, airflow, 
and heat flow in porous media is developed. The following thermal effects are taken into account: heat 
transfer through conduction and convection, flow, as well as viscosity and density variation of the fluids 
due to temperature gradients. The governing equations in terms of soil displacements, water and air 
pressures, and temperature are coupled non-linear partial differential equations and are solved by the finite 
element method. Two examples are presented to demonstrate the model performances. 
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NOMENCLATURE 

Subscripts or superscripts ki absolute permeability 
kr relative permeability 

w water 
s soil 
π air, water.or soil μ dynamic viscosity 

p density 
T temperature 

h horizontal λij thermal conductivity 
v vertical Q heat source or sink 

β thermal expansion coefficient 
Other symbols C heat capacity 

n porosity 
q flux K bulk modulus 
atm atmospheric condition ui displacement 
ref reference condition εij strain 
o initial conditions dεT

ij strain caused by thermoelastic expansion 
(overbar) boundary conditions dεT

ij plastic strain increment 
Γ boundary σij total stress 
nt normal vector at boundary σ"ij modified effective stress 
p pressure a Biot's constant 
pc capillary pressure Dijkl tangent matrix 
S saturation bi body force 
wi velocity 
k permeability 

I N T R O D U C T I O N 

A fully coupled model to simulate isothermal water flow and airflow in deforming porous media 
has recently been proposed by Schrefler and Zhan 1 . This model is now extended to also take 
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into account nonisothermal conditions. A proper model for heat and mass transfer in partially 
saturated porous media should consider in addition to the linear momentum balance equation 
for the whole mixture (equilibrium equation), an energy balance equation taking into account 
latent heat transfer and at least two mass conservation equations. These last two equations result 
from the sum of the mass conservation equations of the separate phases considered in the 
simulation. More traditional methods used complex transfer coefficients2. A numerical solution 
of a full model of the first type described above does not yet exist to our knowledge and the 
model presented in this paper is only a step towards this goal. 

Only few published solutions can be found for heat and mass transfer in unsaturated deforming 
porous media. This appears clearly from the extensive survey by Alonso et al.3 on the general 
topic of partially saturated porous media. The following publications are chosen to point out 
the different approaches present in the literature. 

A one-dimensional heat and moisture transfer model in a rigid unsaturated soil was presented 
by Dakshanamurthy and Fredlund4. The model considers liquid flow (no vapour flow), gas flow 
and heat flow equation, which is uncoupled from the other two conservation equations. The 
liquid flow equation neglects flow due to temperature gradient and the heat flow equation 
considers only flow due to conduction. The permeability is constant as well as the density of 
the mixture. Thomas5 used one moisture continuity equation which describes both liquid and 
vapour flow. De Vries' theory with modifications along the lines of Luikov's work6 is used in 
the heat conservation equation. No solid deformation is considered. The variables are temperature 
and volumetric moisture content. Capillary potential and temperature were used in a more recent 
paper by Thomas and King7 for heat and mass transfer analysis in rigid unsaturated soil. Baggio 
et al.8 presented a model for rigid matrix with three conservation equations: one for energy, one 
for dry air, and one for water phase (liquid and vapour). In the energy balance equation latent 
heat transfer and convection are accounted for. Geraminegad and Saxena9 put forward a 
thermoelastic model for heat and mass transfer in partially saturated soil. A modified version 
of Philip and de Vries' formulation is applied in the heat transfer equation. Two mass transfer 
equations are used and the variables of the model are temperature, capillary and gas pressure. 
The model incorporates only volumetric soil deformation and neglects hence soil deformation 
due to external loading. A model for heat and mass transfer in deforming geothermal reservoirs 
was presented by Lewis et al.10. In that instance capillary pressure effects can be neglected so 
that a unique continuity equation for both steam and water was used. 

From this short survey it follows that there is ample space for a model for unsaturated 
nonisothermal flow in deforming porous media such as that one presented in the following. 
Demand for such a model also results from the design of nuclear waste disposal sites in clay or 
salt deposits, where not always fully saturated situations prevail and mechanical aspects become 
important. 

Our model solves by means of the finite element method the linear momentum balance equation 
for the whole mixture, the mass balance equations for solid, air and water and the energy balance 
equation again for the mixture. It makes use of the modified effective stress concept together 
with the capillary pressure relationship. In the presented formulation, the mass balance equation 
for the solid is summed with the mass balance equations of the fluids11. The primary variables 
are displacements of the solid skeleton, water pressure, air pressure and temperature. At this 
stage the model neglects latent heat transfer, but considers heat transfer through conduction 
and convection and flow both due to pressure gradient and to temperature gradient. The limits 
of its applicability are indicated in the next section, where the physical model is presented in 
more detail. Two examples reported at the end of the paper demonstrate that the model and 
its solution procedure are reasonable and applicable. The first example is used for validation of 
the model and comparisons are made with the results of a fully saturated simulator12 for several 
sets of parameters. Partially saturated conditions are then analysed. The second example, 
previously analysed in Reference 4, shows the potential of the model in a case of thermal 
transport, simulating in a simplified way, evaporation and infiltration at a boundary surface. 
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THE PHYSICAL MODEL 

The physical model is the same as that in Reference 1. Here and in the following sections only 
the modifications due to the introduction of non-isothermal conditions are shown.The capillary 
pressure, relating water pressure pw and air pressure pa, is now a function of the water saturation 
Sw and temperature T 

pc = Pc (Sw,T) (1) 

Relation (1) is experimentally determined and usually shows hysteresis, which, at present, is 
disregarded. Equation (1) is numerically inverted to obtain, 

Sw = Sw(Pc,1) (2) 
For the constitutive law of the solid phase a modified effective stress tensor σ"ij is used, as defined 
in Reference 11: 

σ"ij = σij + αδijP (3) 
where σij is the total stress tensor, a is the Biot's constant and 

p = Sapa + Swpw (4) 

represent a fluid averaged pressure. 
The constitutive relationship for the solid skeleton is now, 

dσ"ij = Dijkl(dεkl - dεT
kl - dεP

kl) (5) 

where dεT
kl = δkl

βs
3dT, is the strain caused by thermoelastic expansion; dεp

kl, the plastic strain 

increment and Dijkl is a temperature dependent tangent matrix. Thermal equilibrium is assumed 
between soil, air and water. This implies that the temperature is the same for the three constituents. 
The temperature is assumed to be always far below the critical temperature of water. This 
excludes the modelling of geothermal reservoirs with high temperatures. Furthermore phase 
change phenomena (evapo-transpiration) must be negligible. Our model allows to evaluate the 
influence of visocosity and density variation due to temperature gradients. As a first approach 
all the heat transfer phenomena are taken into account in the experimentally derived constitutive 
equation for the effective thermal conductivity tensor λij(Sw,7) and in convection effects. The 
model applies furthermore only to geomaterials where the main mass transport mechanism for 
the aqueous phase is flow of liquid water. Investigations are at present made to eliminate all 
these limitations. 

GOVERNING EQUATIONS 

We consider only slow phenomena and small displacements. For a full account of the theory, 
using more complex arguments which confirm the equations derived below, the interested reader 
is referred to References 11, 13 or 14. 

The linear momentum balance equation for the whole mixture, in terms of total stresses reads as, 

σki,k + pbi = 0 (6) 
where p is the mixture mass density and bi is the specific body force. 

The linear momentum balance equation for each fluid phase yields Darcy's law15, 

wπ
i = Kπ(–Pπi + Pπbπ

i) π = w,a (7) 
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where the permeability of the medium to the π fluid, 

is now temperature dependent, mainly because of dynamic viscosity μπ = μπ(T). 
The mass balance equations for the fluid phases1, 

is now transformed to account for the densities dependence on pressure and temperature. Equation 
(9) also allows to take into account flow due to temperature gradient. Fron the equation of state 
for the fluid phases, we have12, 

The solid density rate which is contained in the first term of (9) and is expressed in isothermal 

condition as p/Ks, becomes now, 

Because of the temperature dependence of Sw through equation (2), we have, 

and hence 

The mass balance equation for water and air, after introduction of Darcy's law and equations 
(10), (11) and (13), are then written, respectively, as, 

In the nonisothermal case an energy balance equation is necessary for the whole mixture. By 
neglecting mechanical heat generation, this balance equation may be written as16, 
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where ρC=(1-n)ρsCs + nSwρwCw + nSaρaCa is the heat capacity, Q = (1-n)ρsQs + nSwρwQw+ 
nSaρaQa the source term of the mixture (the sum of the terms Qπ of each constituent). The second 
and the third terms are the heat transfer through convection. After introduction of equations 
(10)-(13) and of Darcy's law, the energy balance equation becomes, 

In many situations the temperature and pressure dependence of ρπ can be neglected for the 
liquid phase in (16), eliminating several terms in (17). 

It has to be reminded that the process under investigation is restricted by the second law of 
thermodynamics13. Equations (5), (14), (15) and (17) describe the coupled heat flow, water flow 
and airflow in a deforming porous medium. For these equations we have to specify the initial 
conditions, 

ui = uo
i, pπ=po

π T=To at = 0 
and the boundary conditions, 

ni representing the outward normal of the boundary. 

DISCRETIZATION AND SOLUTION 

The discretization process is identical to that described in Reference 1. In addition to the variables 
ui, pw, and pa we have now also T. To obtain the weak form of the energy balance equation we 
use a Galerkin formulation12 and terms involving second spatial derivatives are transformed 
through Gauss' theorem. 

Using matrix notation, the discretized equations are, 

The matrices are listed in the appendix. Equation (19) forms a coupled nonsymmetric and 
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nonlinear system of ordinary differential equations in time. This can be concisely written as, 

)) 
where x = {u,pw,pa,T} and the matrices A, C, and F are obtained by inspection from (19). For 
the solution we use the generalized mid-point method which yields the recurrence scheme, 

The matrices are evaluated at n + 0. Because of the nonlinearities involved a solution scheme of 
the fixed point type is used within evey time step. In this scheme the first term of the first equation 
(19) is substituted by the tangent stiffness matrix KT

17. As far as the error analysis for the solution 
is concerned, this can be carried out in the same way as in Reference 1 or, with more detail, in 
Reference 18. 

CONSTITUTIVE EQUATIONS AND TEMPERATURE DEPENDENT PARAMETERS 

Soil constitutive models including temperature effects reported in literature are rather limited. 
Such models can be found, e.g.in References 19-21. The equations of state for water and air, 
including temperature, are already reported in Reference 1. Other temperature dependent 
parameters such as the dynamic viscosity of water, relative permeability of water, thermal 
expansion coefficient and heat capacity of water can be found in Reference 12. Relative 
permeabilities of air and water are also reported in Reference 22. The relationships between 
relative permeabilities of water and air, the saturation of water and the capillary pressure proposed 
Brooks and Corey23 are used in the numerical simulation. No changes in these relations due 
to nonisothermal conditions are introduced. 

VALIDATION AND APPLICATION EXAMPLES 

Firstly the code based on the theory outlined above is validated with respect to fully saturated 
nonisothermal consolidation. For this purpose a thermoelastic one-dimensional consolidation 
problem is solved and compared with a previous solution12. The same problem is then solved 
in partially saturated conditions. 

A column of linear elastic material is subjected to an external surface load of 1000 N/m2 and 
to a surface temperature jump of 50°C above the reference temperature Tref of the column. The 
boundary conditions are: 

• lateral surface uh = 0, qw = 0, qa = Q, qT = 0; 
• top surface pw = patm, pa = patm.. T=Tref + 50°C; 
• bottom surface ur = 0, qw = 0, qa = 0, qT = 0. 

The initial condition for temperature is T= Tref and initial pressures pw and pa depend on initial 
saturation profile as described later. For comparison purposes, the same material properties of 
the referenced solution12 are used: 
elastic modulus £=6000 kPa 
poisson ratio v=0.4 
permeability K= 4 c 10 -6 m/s 
porosity n = 0.5 
thermal conductivity λ = 0.2 kCal/m/°C/s 
fluid viscosities μw= 1 × 10- 3, μa = 1 × 10 -6 Ns/m2 

thermal expansion coefficient βs = 0.9 × 10- 6, βw=0.63 × 10 -5 °C-1 

heat capacity ρC=40 kCal/°C kg 
densities ρs = 2000, ρw = 1000, ρa = 1.22 kg/m3 
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The bulk modulus of water phase and solid phase are 0.43 x 1013 N/m2 and 0.14 × 1013 N/m2, 
respectively, whereas for air the equation of state of a prefect gas is used. The width of the 
column is 2 metres and the depth 7 metres, as shown in Figure 1, where the spatial discretization 
is also presented. 

Temporal discretization is performed with an initial step of 0.01 days and multiplied by 10 
after repeating 10 steps until 106 days, the required time of analysis. 

The problem is solved with three different physical conditions as far as the saturation is 
concerned: 1) fully saturated, 2) initially homogeneous saturation 0.92, and 3) initial linear 
distribution from 0.92 at the top surface to 1.0 at the bottom surface. Figure 2 shows the 
temperature distribution versus time for different nodes. The distributions are practically the 
same for the three studied cases where also two different values of the thermal expansion 
coefficient of water βw=0 and βw=0.63 x 10 -5 °C-1 were assumed. This depends on the selected 
heat capacities and on the saturation distribution which is always high. The same values were 
obtained as for the fully saturated case in Reference 12 with a different code, as indicated in 
Figure 2. In Figure 3 vertical displacements for selected points are presented for cases 1) and 2). 
The effect of partial saturation upon the reduction of the consolidation phase is remarkable at 
onset of the phenomenon, whereas the swelling effect due to temperature is considerable at high 
time values for both cases. Figure 4 depicts the temperature effects on vertical displacements at 
different points within the column in case 3). For comparison reasons also the isothermal solution 
is shown, as well as an isothermal solution obtained with a different code under static air phase 
assumption, i.e. the air phase remains at atmospheric pressure. In this example the swelling of 
the sample is only due to temperature effects. Figure 5 shows the comparison of saturation 
histories with isothermal and nonisothermal effects. 

As a next example, the problem solved by Dakshanamurthy and Fredlund4 is solved. The 
model applied by the two above authors was shortly discussed in the introduction. The problem 
is that of moisture and heat flow in an unsaturated subgrade soil below a highway or airfield 
pavement due to the effect of environmental change. The subgrade system is assumed initially 
in a state of equilibrium. Then sudden environmental changes are imposed at the boundary, 
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where evaporation or infiltration builds up an excess pore water pressure, respectively positive 
or negative with respect to the equilibrium state. This overpressure and temperature gradient 
cause simultaneous flow of water and air. In the present fully coupled simulation, the same 
constitutive relationships are used both for the infiltration (wetting) and evaporation (drying) 
case. Hysteresis effects are hence disregarded. Obviously the computer code can handle different 
relationships, even though the presence of wetting and drying in the same simulation results in 
further difficulties for the numerical analysis. Again the soil deformation is taken into account. 
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The initial conditions are: T= 10°C,pa= 102000 N/m2, pw= – 420000 N/m2 for infiltration case 
and pw= —280000 N/m2 for evaporation case respectively. 

The boundary conditions are: 
• lateral surface uh = 0, qw = 0, qa = 0, qT = 0; 
• top surface T=25°C, pa = 102000 N/m2, pw= – 280000 N/m2 for infiltration case and 

pw= —420000 N/m2 for evaporation case respectively; 
• bottom surface ur = 0, qw = 0, qa = 0, qT = 0. 
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Time step is initially one hour and then increased by one order after ten steps until 1000 hours. 
In the following figures, where possible, our results are compared with those of Reference 4. 

Figure 6 shows the comparison of the temperature within the clay layer as a result of an increase 
in the temperature from 10°C (283.2°K) to 25°C (298.2°K) under evaporation condition. The 
figure illustrates how the imposed thermal increase at the surface is slowly transferred to the 
bottom of soil and equilibrium with the new boundary condition is eventually reached. The 
same diagram is obtained also for the temperature increase under infiltration conditions. The 
different behaviour of our model when compared with Reference 4 is mainly due to the temperature 
and pressure dependence of the air density through the state equation of a prefect gas. Figure 7 
depicts the comparison of the pore water pressure distribution throughout the clay layer due 
to a change in the pore water pressure at the top surface. The pore water pressure was initially 
—280 kPa, and then changed to a value of — 420 kPa instantaneously, assumed due to 
evaporation. Here the difference in time transient behaviour is enhanced due to the difference 
in the models. Figure 8 shows the corresponding pore air pressure distributions throughout the 
clay layer under volume decrease or consolidation process and Figure 9 presents the distribution 
of saturation throughout the clay layer, under the consolidation process which is shown in 
Figure 10. The following Figures depict the reverse processes, i.e. infiltration conditions are here 
considered together with the same temperature increase as in Figure 6. Figure 11 depicts the 
comparison of the pore water pressure distribution in the clay layer. Recalling that the 
pore water pressure was initially — 420 kPa, and then suddenly changed at the boundary to a 
value of — 280 kPa to simulate infiltration. Figure 12 presents the distribution of saturation 
throughout the clay layer, under the swelling process. From the different behaviour of the 
compared models it appears important to take into account temperature and pressure dependence 
of the fluid parameters as well as airflow due to temperature gradients. 

To assess the effect of the deformability of the solid skeleton on the other involved fields, a 
further numerical simulation was performed using the same parameters are above, except for 
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the soil Young's modulus, which was assumed 100 times larger. Figure 13 shows the obtained 
results in terms of water pressure for the swelling case. This influence is evident, mainly at 
intermediate times of the analysis and results in a slower dissipation of the pressure change when 
deformable soil is considered. 

CONCLUSIONS 

A fully coupled model for simulating the complex behaviour of multiphase fluid and heat flow 
in deformable porous media has been presented. The model consists of a group of nonlinear 
and coupled partial difference equations, namely, (1) the equilibrium equation for soil; (2) the 
continuity equations for aqueous and non-aqueous phase fluids; (3) the energy conservation 
equation. These equations are solved by the finite element methods and soil displacements, 
aqueous and non-aqueous phase fluid pressure, and temperature are the unknown variables. 
Several thermal effects are taken into account such as flow due to temperature gradients, 
temperature dependent soil parameters and capillary pressure relationship and heat transfer 
through conduction and convection. The validity of the approach hs been demonstrated by two 
examples. Further developments of this model will include also latent heat transfer which becomes 
important when the temperature gradients are no longer small. 
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APPENDIX 

The matrices in the discretized equations (19) are shown here in detail, using the notation of 
Reference 12. 
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